Segmentation by color influences responses of motion-sensitive neurons in the cortical middle temporal visual area.
نویسندگان
چکیده
We previously showed that human subjects are better able to discriminate the direction of a motion signal in dynamic noise when the signal is distinguished (segmented) from the noise by color. This finding suggested a hitherto unexplored avenue of interaction between motion and color pathways in the primate visual system. To examine whether chromatic segmentation exerts a similar influence on cortical neurons that contribute to motion direction discrimination, we have now compared the discriminative capacity of single MT neurons and psychophysical observers viewing motion signals with and without chromatic segmentation. All data were obtained from rhesus monkeys trained to discriminate motion direction in dynamic stimuli containing varying proportions of coherently moving (signal) and randomly moving (noise) dots. We obtained psychophysical and neurophysiological data in the same animals, on the same trials, and using the same visual display. Chromatic segmentation of the signal from the noise enhanced both neuronal and psychophysical sensitivity to the motion signal but had a smaller influence on neuronal than on psychophysical sensitivity. Hence the ratio of neuronal to psychophysical thresholds, one measure of the relation between neuronal and psychophysical performance, depended on chromatic segmentation. Increased neuronal sensitivity to chromatically segmented displays stemmed from larger and less noisy responses to motion in the preferred directions of the neurons, suggesting that specialized mechanisms influence responses in the motion pathway when color segments motion signal in visual scenes. These findings lead us to reevaluate potential mechanisms for pooling of MT responses and the role of MT in motion perception.
منابع مشابه
Attention to the Color of a Moving Stimulus Modulates Motion-Signal Processing in Macaque Area MT: Evidence for a Unified Attentional System
Directing visual attention to spatial locations or to non-spatial stimulus features can strongly modulate responses of individual cortical sensory neurons. Effects of attention typically vary in magnitude, not only between visual cortical areas but also between individual neurons from the same area. Here, we investigate whether the size of attentional effects depends on the match between the tu...
متن کاملNeurons in cortical area MST remap the memory trace of visual motion across saccadic eye movements.
Perception of a stable visual world despite eye motion requires integration of visual information across saccadic eye movements. To investigate how the visual system deals with localization of moving visual stimuli across saccades, we observed spatiotemporal changes of receptive fields (RFs) of motion-sensitive neurons across periods of saccades in the middle temporal (MT) and medial superior t...
متن کاملEffect of feature - selective attention on neuronal responses in macaque area MT 1 2
28 Attention influences visual processing in striate and extrastriate cortex, which has been extensively 29 studied for spatial-, object-, and feature-based attention. Most studies exploring neural signatures of 30 feature based attention have trained animals to attend to an object identified by a certain feature and 31 ignore objects/displays that were identified by a different feature. Little...
متن کاملEffect of feature-selective attention on neuronal responses in macaque area MT.
Attention influences visual processing in striate and extrastriate cortex, which has been extensively studied for spatial-, object-, and feature-based attention. Most studies exploring neural signatures of feature-based attention have trained animals to attend to an object identified by a certain feature and ignore objects/displays identified by a different feature. Little is known about the ef...
متن کاملThe effects of feature attention on prestimulus cortical activity in the human visual system.
Covert attention affects prestimulus activity in the visual cortex. Although most studies investigating neural mechanisms of attention have focused on the effects of spatial attention, attention can also be directed to particular features. To investigate the spatiotemporal nature of feature attention, we measured subjects' brain activity using magnetoencephalography (MEG) and functional magneti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 10 شماره
صفحات -
تاریخ انتشار 1999